

Capacitance-resistance-modeling of sorption thermal energy storage systems

SIMON FRASER UNIVERSITY

ENGAGING THE WORLD

Mina Rouhani¹ and Majid Bahrami¹

1 Laboratory for Alternative Energy Conversion (LAEC), School of Mechatronic Systems Engineering, Simon Fraser University

Nomenclature		
UA _{ads} (W	/ K ⁻¹) (Overall heat transfer coefficient of sorber bed
UA _{evap} (W	/K ⁻¹) (Overall heat transfer coefficient of evaporator
UAcond (W	/K ⁻¹) (Overall heat transfer coefficient of condenser

(m² s⁻¹) Surface diffusion coefficient in LDF mode

(kJmol⁻¹) Activation energy

(J K⁻¹) Thermal capacitance of the evaporator mc_{cond} (J K⁻¹) Thermal capacitance of the condense (kgkg_{ads}-1) Equilibrium water uptake

Mass of the sorbent materi

 ω_{eq}

 m_{ads}

(kg)

 $\dot{m}_{hf,i}$ (kg s⁻¹) Flow rate of inlet hot fluid to the sorber bed mcf,i (kg s-1) Flow rate of inlet cold fluid to the sorber bed Flow rate of inlet chilled water from the evaporator $\dot{m}_{ch,i}$ (kg s⁻¹) Heat transfer fluid HTF

 $t_{storage}$ (s)

ESD

SP

LAEC: www.sfu.ca/~mbahrami/

Time of storage

(GJm⁻³, MJkg⁻¹) Energy storage density

(W kg_{drv.ads}⁻¹) Specific power